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Abstract
Within a general framework we study the effective, deformation-induced
interaction between two colloids trapped at a fluid interface. As an application,
we consider the interface deformation owing to the electrostatic field of charged
colloids. The effective interaction is attractive and overcomes the direct
electrostatic repulsion at large separations if the system is not mechanically
isolated. Otherwise, a net attraction seems possible only for large enough
colloidal charges.

1. Introduction

In view of various basic and applied issues (two-dimensional melting [1], mesoscale structure
formation [2], engineering of colloidal crystals [3]), the self-assembly of sub-micrometre
colloidal particles at water–air or water–oil interfaces has gained significant interest in recent
years. These particles are trapped at the interface if water wets the colloid only partially; in this
case the trapped configuration is stable against thermal fluctuations [4]. For charge-stabilized
colloids at interfaces, the repulsive part of their mutual interaction is well understood and
behaves as a dipole–dipole interaction at large separations due to the screening of the colloidal
charge [5, 6] (see (12) below). Nonetheless, charged colloids at interfaces apparently also
exhibit attractive interactions far beyond the range of van der Waals forces. According to
the experimental studies listed in [7], polystyrene spheres (radii R = 0.25–2.5 µm) on flat
water–air interfaces spontaneously form complicated metastable mesostructures. They are
consistent with the presence of a minimum in the effective intercolloidal potential at separations
d/R ≈ 3 · · · 20 with a depth of a few kBT . Reference [8] provides a direct measurement of
the effective potential for PMMA spherical particles of radius R = 0.75 µm at the surface of
a water droplet immersed in oil: a surprisingly steep minimum has been found at a separation
d/R = 7.6 with a depth >4 kBT .
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A theoretically sound mechanism for the appearance of an attractive minimum in the
intercolloidal potential at µm separations has not been found yet4. Electrostatic forces
can deform the interface and thus a capillary-mediated effective attraction appears as a
possible explanation. The conclusions reached in the literature, however, are varied and
contradictory [8, 10–14]. In a systematic theoretical study of the effective potential induced by
the interfacial deformation, we first considered the case of an asymptotically flat interface and
calculated the effective colloid–colloid potential within a superposition approximation [13].
While reliable for systems under the action of external forces, this approximation is insufficient
for mechanically isolated systems [14]. Recently, we have started to analyse the relevance of
finite-size effects [15] (related, for example, to the finite droplet size in the experiment reported
in [8], and to the finite thickness of a nematic layer on top of which colloidal patterns provide
some experimental evidence [16] for a capillary-mediated attraction as well).

2. Deformation of an asymptotically flat interface

The shape of a pieceS of the interface is determined by the condition of mechanical equilibrium
under the common action of a pressure field �(r) acting on the fluid interface and the line
force acting at the boundary C of S:

∫
S

d A en� + γ

∮
C

d� et × en = 0, (1)

where γ is the surface tension, en is the local unit vector normal toS and et is the local unit vector
tangent to C (such that et × en points outwards). We apply this equation to the configuration
of a single spherical colloid trapped at a fluid interface which approaches asymptotically the
plane z = 0: C0 is the projection on this plane of the colloid–interface contact line of radius
r0, Cr is a circle of radius r > r0, and Sr is the region between C0 and Cr . When the distance
r from the colloid is large enough (r � r0), the (rotationally symmetric) vertical height u(r)

of the interface, measured from the plane z = 0, is small and the line force exerted at Cr can
be treated in linear approximation: en = ez − er(du/dr) + O(u2), where er is the radial vector
pointing away from the colloid. Projection of (1) onto the vertical direction ez then yields

− 2πγ r
du

dr
=

∫
Sr

d A (en · ez)� + γ

∮
C0

d� (et × en) · ez . (2)

Since the colloidal particle is also in mechanical equilibrium, the contact line force at C0 must
be balanced by the vertical force F exerted on the colloid by sources other than surface tension
(gravitational, electrostatic, hydrostatic . . . ):

F − γ

∮
C0

d� (et × en) · ez = 0. (3)

We define the dimensionless parameters

εF := − F

2πγ r0
(force on the colloid), (4)

ε� := 1

2πγ r0

∫
Sλ

d A (en · ez)� (force on the whole interface), (5)

4 As a matter of fact, in [9] the effective attraction is attributed to oil contaminations of the water–air interface.
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where λ is a length determined by a boundary condition far from the colloid, for example, the
size of the vessel containing the system [13]. Using these definitions, equations (2) and (3)
combined yield

r
du

dr
= r0(εF − ε�) +

1

γ

∫ λ

r
ds s�(s), (6)

because the linearization en · ez = 1 + O(u) applies in the integral of � over the range
s > r � r0. This equation can be integrated immediately with the boundary condition u(λ) = 0
(pinned interface):

u(r) = r0(ε� − εF) ln
λ

r
− 1

γ

∫ λ

r
ds s�(s) ln

s

r
(r0 � r). (7)

We note that ε� − εF is the (dimensionless) net force acting on the system ‘colloidal
particle + interface’. Assuming the asymptotic decay �(r � r0) ∼ r−n with n > 2, the
following two qualitatively different cases arise.

(i) Mechanical non-isolation (ε� �= εF ): the interface deformation varies asymptotically as
a logarithm, u(r) ∼ ln r , and the net force is balanced by the line force exerted at the
system boundary determined by λ.

(ii) Mechanical isolation (ε� = εF ): the asymptotic decay of the interface deformation is
faster than logarithmic, u(r) ∼ r2−n , and the limit of large system sizes (λ → ∞) is
finite.

We emphasize the generality of the results contained in equation (7). In particular, the equation
holds also even if � and the meniscus deformation near the colloid are too large to allow the
small-deformation approximation (linearization) everywhere.

3. Capillary-induced potential on an asymptotically flat interface

We consider two colloidal particles a distance d apart at an asymptotically flat interface. (By
symmetry, we consider just one of the colloids and Ŝwill denote the region in the corresponding
half-plane outside C0.) �̂(r) denotes the pressure field and F̂ the force on this colloid, both
evaluated in the reference configuration corresponding to ε̂F = ε̂� = 0: the interface is flat and
the colloid is positioned vertically such that at three-phase contact Young’s law holds in terms
of the contact angle θ ∈ (0, π).5 A configuration is then described by the deformation û(r)
and the height �ĥ of the colloid centre with respect to the unperturbed reference height. The
free energy of a configuration contains contributions from the change of area of the two-phase
interfaces and from work done by the forces �̂ and F̂ upon displacements with respect to the
reference configuration [13]. Assuming |ε̂F |, |ε̂�| � 1, so that the interface deformation is
small everywhere (see (6)), one obtains the following free energy functional:

F̂ =
∫
Ŝ

d A
[
γ |∇û|2 − 2 �̂ û

]
+

γ

r0

∮
C0

d� [�ĥ − û]2 − 2F̂�ĥ, (8)

up to corrections of O(ε̂F , ε̂�)3. Without loss of generality, we write û =: u1 + u2 + ûm

and �̂ =: �1 + �2 + 2�̂m , where u1 (u2) is the solution of the single-colloid configuration

5 Thus the radius of the three-phase contact circle is r0 = R sin θ , where R is the radius of the colloid.
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centred at the first (second) colloid (cf equation (7)) and �1 (�2) is the corresponding single-
colloid pressure field. The equilibrium state minimizing F̂ is obtained by solving the following
equations:

�ĥ = 〈ûm + u1 + u2〉 − ε̂Fr0, 〈·〉 := 1

2πr0

∮
C0

d�(·),
γ∇2ûm = −2�̂m, r ∈ Ŝ,

er · ∇(ûm + u1 + u2) = 1

r0
[ûm + u1 + u2 − �ĥ], r ∈ C0.

(9)

Additionally, the asymptotic boundary condition ûm(r → ∞) = 0 holds, i.e., ûm does
not contain logarithmic terms6. The effective interaction potential induced by the meniscus
deformation, depending on the separation d , is defined as Vmen(d) := F̂eq(d)− F̂eq(d → ∞),
where the free energy for d → ∞ corresponds to the free energy of two isolated single-colloid
configurations. If the system ‘interface + colloids’ is not mechanically isolated (ε̂F �= ε̂�),
one obtains asymptotically using equation (7) [13]

Vmen(d) ≈ −2πγ r0(ε� − εF)u(d) ≈ −2πγ r2
0 (ε� − εF)2 ln

λ

d
(r0 � d), (10)

which describes a long-ranged attractive force, irrespective of the precise form of the (single-
colloid) pressure field �(r). Physically, Vmen(d) represents the work done by the net
force 2πγ r0(ε� − εF) in the single-colloid configuration as this configuration as a whole
is shifted vertically by an amount u(d) due to the meniscus deformation induced by the
second colloid. This effect is captured by the superposition approximation, defined by
ûm = 0 = �̂m [17, 18, 13].

When the system is mechanically isolated,however, Vmen(d) does depend on the functional
form of �(r), and the superposition approximation is no longer sufficient [13–15], because
Vmen(d) is dominated by the work done by the additional pressure �̂m and the ensuing additional
vertical shift ûm . Motivated by the experiments with charged colloids, we consider the case
that �̂ and F̂ are due to the electrostatic force acting on the charged colloid and the counterions
accumulated at the fluid interface and the external surface of the colloids7. Far from a colloid,
the electric field is normal to the interface and within the Debye–Hückel approximation the
electric fields from the individual colloids are additive, and thus �̂m = √

�1 �2. The single-
colloid electric field decays dipole-like, so the associated stress field �(r) ∝ (γ εF/r0)(r0/r)6

and εF > 0 [5, 12, 14]. Equation (9) can be solved analytically in the asymptotic limit d → ∞
leading to an attractive capillary-induced interaction [14],

Vmen(d) ∝ −ε2
Fγ r2

0

(r0

d

)3
(r0 � d). (11)

The direct dipolar repulsion between the colloids is given asymptotically by [14]

Vrep(d) ∝ εFγ r2
0

(r0

d

)3
(r0 � d), (12)

so the total potential Vrep + Vmen is asymptotically repulsive in the regime εF � 1, and an
attraction is only possible for εF = O(1).

In order to study Vtot(d) for closer separations d , we have calculated [14] �(r) within the
Debye–Hückel approximation assuming that all the charge of the colloid is concentrated at its
centre (so the results are not quantitatively reliable at distances d ≈ r0), and (9) was solved
numerically. It is found (see figure 1) that Vtot(d) can exhibit a shallow minimum provided that

6 As can be easily checked by generalizing the argument of section 2, this is also true in the absence of mechanical
isolation provided the net external force is additive: 2ε̂F − ε̂� = 2(εF − ε�).
7 Note that there is also the osmotic pressure on the interface exerted by the counterions [11, 12, 14].
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Figure 1. Total intercolloidal potential as function of the separation, in units of 103q2κ2r0/2πε2,
where q is the total charge of a colloid and ε2 is the dielectric constant of one fluid phase (for the
other fluid phase we took ε1 = ε2/81 so that we have, for example, air and water). The curves
correspond to εF = 0.6.

(This figure is in colour only in the electronic version)

the Debye length κ−1 ∼ r0 (κ−1 ≈ 1 µm in ultrapure water) and εF � 0.3, which is at the limit
of validity of our calculations. The presence of a minimum can be traced back to a crossover
in �(r) at κr ∼ 7 from being dominated by the normal electric field to being dominated
by the tangential electric field and the ionic osmotic pressure, as the colloid is approached
and the charge looks less screened. For experimentally relevant values of the parameters
(γ = 0.07 N m−1, θ = π/2, R = 0.5 µm, κ−1 = 1 µm), the condition εF = 0.6 implies
a total colloidal charge q ≈ 2 × 105 elementary charges (consistent with the typical values
quoted in the literature [7]). This yields a minimum at d ≈ 13 µm and a depth ≈32 kBT at
room temperature. These numbers suggest that the effect just described may be experimentally
relevant. Thus more refined calculations relaxing some of the present assumptions (pointlike
charge distribution and Debye–Hückel approximation) are called for.

4. Outlook and conclusions

The finite size of the experimental system may be of importance. As considered in [13], an
external electric field violates mechanical isolation of the system ‘colloid + interface’. This
can be relevant for the experiment of [8], where the particles are trapped at the interface of
a water droplet of a relatively small radius Rdrop ≈ 32R. The ions can accumulate at the far
side of the droplet if the system is not properly grounded. The argument of section 2 can be
generalized for the deformation of a quasi-spherical interface and one obtains [15]

u(r) = r0(εF − ε�)

[
1 + cos

(
r

Rdrop

)
ln tan

(
r

2Rdrop

)]
+ · · · (r0 � r). (13)

If the droplet is grounded, εF = ε� and there is no curvature-induced logarithmic deformation
in the intermediate asymptotics r0 � r � Rdrop. (This corrects a corresponding opposite
remark made in [13].) The case of a non-grounded, charged droplet is currently under
investigation.
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Another example for the relevance of finite size corrections may be found in analysing
the experiment reported in [16]. There colloidal droplets have been observed to self-assemble
on top of a nematic layer into patterns which are consistent with an effective intercolloidal
potential which besides short-range repulsion features an attractive minimum at intermediate
distances. The repulsive contribution in the effective potential can be understood by analysing
the nematic distortions around the colloids (being equivalent to the direct electrostatic repulsion
considered above). Capillary-mediated interactions arise through the presence of a net force
on the colloid exerted by the substrate onto which the nematic layer is deposited. Essential for
the occurrence of such a net force are the hybrid alignment boundary conditions: the director
is anchored parallel at the substrate and perpendicular at the upper interface of the nematic
film. This gives rise to a spatially varying director field (background field) even in the absence
of the colloids; in the presence of the colloids oscillatory solutions for the director field around
the background field appear which lead to a net force on the colloid. This net force is absent
if uniform alignment is imposed at the substrate and at the upper interface.

In conclusion, we have demonstrated that a logarithmic attractive potential is possible only
if the system is not mechanically isolated, confirming the conclusions in [10, 11] and refuting
those in [8, 12]. If mechanical isolation holds, we have shown that the capillary-induced
effective potential Vmen(d) decays as

√
�(d) and cannot be computed within the superposition

approximation (which predicts a decay ∝�(d)). This corrects the results in [10, 11]. Under
the condition of mechanical isolation, our calculations suggest that a minimum in the total
potential Vtot(d) can exist if the colloidal charge is large enough.
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